Approach to a child with chronic diarrhea

Riccardo Troncone

Definitions

Diarrhea

>200 ml/m²/day >150-200 g/m²/day

Chronic diarrhea

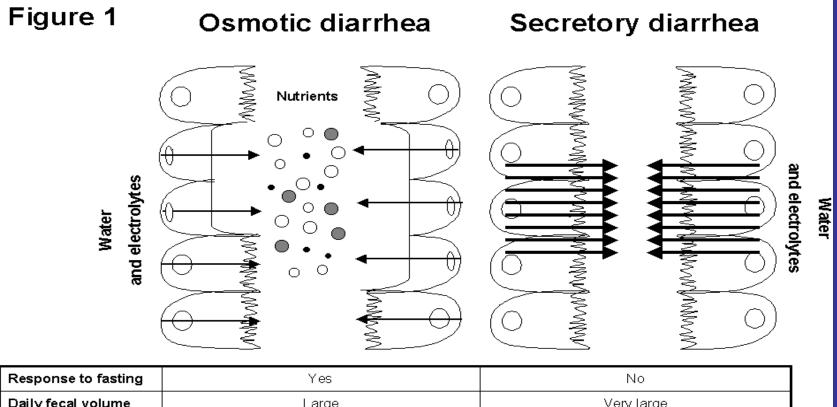
Decrease of consistency and/or increase of frequency and/or volume of stools lasting longer than two weeks, where the change in stool consistency is more important than stool frequency

Mechanisms (more than one may be implicated)

<u>Osmotic diarrhea</u>

Non absorbed substances reaching the distal bowel increase osmotic charge thus pulling water along the intestinal lumen

Secretory diarrhea


Increased active secretion of water and electrolytes into the intestinal lumen surpassing the absorptive capability

<u>Inflammatory diarrhea</u>

Enterocyte injury with inflammatory response, impaired intestinal permeability

<u>Motility alterations</u> Hypermotility or hypomotility

Main mechanisms for diarrhoea

Daily fecal volume	Large Very large		
Stool osmolality	Normal-increased	Normal	
Fecal pH	Low	Low Normal	
Reducing substances	Positive Negative		
Fecal ion gap (mOsm/Kg)	>125	<50	

History

•Age Modalities of beginning •Family history •Growth •Associated symptoms •Dietary history •Stool characteristics

Diseases characterized by chronic diarrhea according to the age at beginning

0-30 days	2-24 months	2-18 years
Abetalipoproteinemia Acrodermatitis enteropathica Congenital chloridorrhea Congenital sodiorrhea Short bowel syndrome Congenital lactase deficiency Disaccharidase deficiency Food allergy Glucose-galactose malabsorption Hirschsprung's disease IPEX Malrotation Congenital microvillous atrophy Lymphangectasia Biliary acids defect Tufting enteropathy Chronic intestinal pseudoobstruction	Chronic infections Post-infectious diarrhea Coeliac disease Chronic non-specific diarrhea Food allergy Cystic fibrosis Autoimmune enteropathy	Chronic infections Post-infectious diarrhea Coeliac disease Irritable bowel disease Lactose intolerance Inflammatory bowel diseases Tumours

Modalities of beginning

Abrupt (e.g. infection)

Gradual

Family history

- •Coeliac disease
- •Cystic fibrosis
- •Atopy

•IBD

Autoimmunity/immunodeficiency

Growth

Very important the help from growth charts

Toddler's diarrhea (chronic non specific diarrhea)

- •No failure to thrive
- •Most common cause between two and four years of age
- •Intermittent and self limited
- •3-6 stool day
- •Not formed
- •Mucous and undigested food particles
- •No pain, no distension, no vomiting
- •No effect on weight and on nutritional status

Associated symptoms

•Abdominal pain

•Recurrent infections

Dietary history

Age of introduction of:

•Cow's milk proteins

•Gluten

Stool characteristics

•Undigested food particles

•Mucus

•Blood

•Steatorrhea

•Offensive smell

•Watery diarrhoea

Physical examination

•Weight and height for age

•BMI

•Wasting

Abdominal distension

•Tenderness

Abdominal mass

•Perianal area (erythema, fissures, fistulas)

•Other organs affected (e.g. skin, respiratory...)

Investigations

•Blood

•Imaging

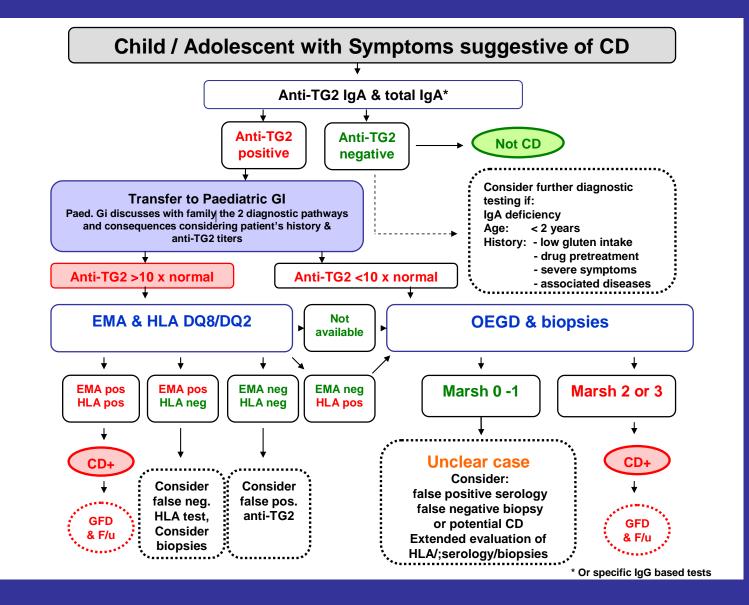
•Endoscopy & Pathology

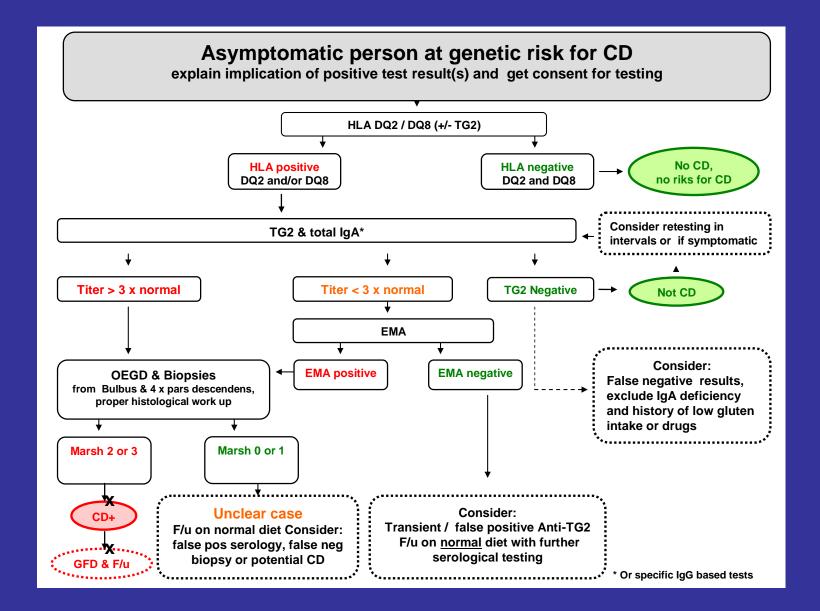
Blood tests

•Blood count

•Inflammatory parameters (ferritin, C protein, ESR)

•Nutritional status (iron, transferrin, folate,...)


Coeliac disease serology


Serological test for celiac disease and new ESPGHAN guidelines

•Anti-gliadin and anti-deamidated gliadin antibodies

- •Anti tissue transglutaminase antibodies
- •Antiendomysium antibodies

Biopsy may be avoided if:
High anti-TG2 titres (>10x)
EMA positivity
HLA DQ2/8
Symptoms disappearing on GFD

Investigations on feces •Electrolytes and pH

- Reducing substances
- •Fat (steatocrit)
- •Elastase
- •Alpha 1 antitripsin
- •Calprotectin/lactoferrin
- •Laxatives
- Microbiology

•Gut hormones

If feces are liquid

Na⁺ and K⁺ on the liquid part

Osmotic gap = 290 - 2 (Na⁺ + K⁺)

>125 mOsm/Kg = osmotic
< 50 mOsm/Kg = secretive</pre>

Approach to secretory diarrhoea (watery diarrhea with no or minimum osmotic gap)

Salmonella, Campylobacter, Shigella, E Coli toxins
Rotavirus

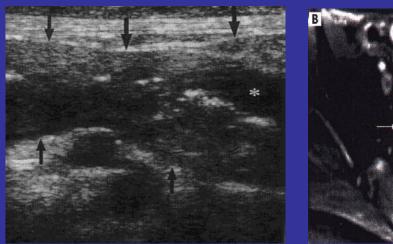
More rare causes

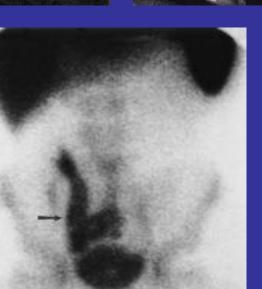
Microvillous atrophy (small intestinal biopsy)Rare tumors (gastrin, VIP, calcitonin)

Approach to osmotic diarrhoea and malabsorptive syndromes

•pH and reducing substances

•Breath test (lactose for lactose intolerance, lactulose for small bowel overgrowth)


•Sweat test (cystic fibrosis)


•Immunological tests (Ig, lymphocyte subsets)

•Small intestinal biopsy

Imaging

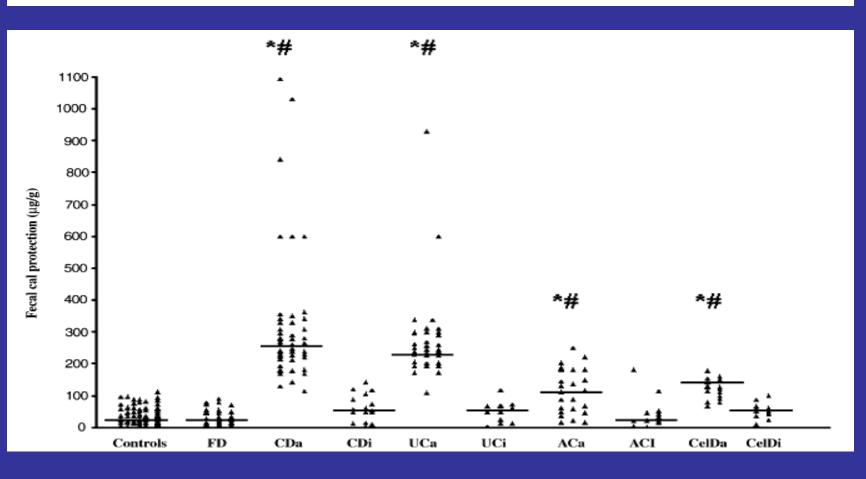
- Barium follow through
- TAC
- MRI
- Ultrasound
- Scintigraphy (leukocytes, albumin, RBC)

Approach to inflammatory diarrhea

•Inflammatory parameters

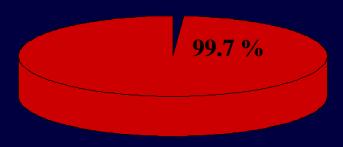
•Calprotectin

•ECP

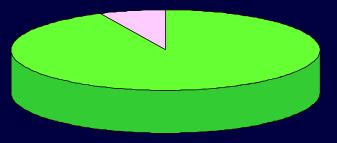

Intestinal permeability

•Upper tract and lower tract endoscopy & biopsies

Alimentary Tract


Diagnostic value of faecal calprotectin in paediatric gastroenterology clinical practice

R. Berni Canani^{a,*}, L. Rapacciuolo^a, M.T. Romano^a, L. Tanturri de Horatio^a, G. Terrin^a, F. Manguso^b, P. Cirillo^a, F. Paparo^a, R. Troncone^a


Combined use of non-invasive tests

 Positive fecal calprotectin, ultrasound, and ASCA/pANCA antibodies

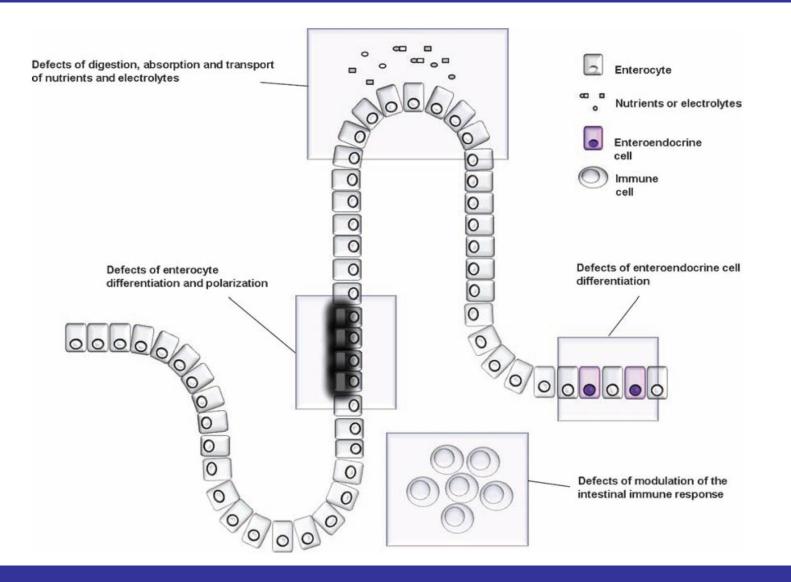
 Probability of having IBD if all tests positive Negative fecal
 calprotectin, ultrasound,
 and ASCA/pANCA
 antibodies

3.5 %

 Probability of not having IBD if all tests negative

Berni Canani R. et al JPGN 2005

Protein losing enteropathy


- •Lymphangectasia
- •Infections
- •Allergic gastroenteropathy
- •IBD
- •Congenital disorders of glicosylation

•Constrictive pericarditis & congestive heart failure

Protein losing enteropathy

- •Diarrhoea
- •Edema
- •Pleural and pericardial effusions
- •Serum levels of albumin, alpha 1 antirypsin, fibrinogen, transferrin
- •Malabsorption of fat soluble vitamins
- •Hypogammaglobulinemia
- •Lymphopenia and altered CMI

Classification of congenital diarrhea

Berni Canani R et al, J Pediatr Gastroenterol Nutr 2010; 50: 360-6

Molecular basis of defects of digestion, absorption and transport of nutrients and electrolytes

Disease	Gene	Location	Function	References
Disaccharidase deficiency				
Congenital lactase deficiency	LCT	2q21	Lactase-phlorizin hydrolase activity	(7)
Sucrase-isomaltase deficiency	EC 3.2.1.48	3q25-q26	Isomaltase-sucrase	(8)
Maltase-glucoamylase deficiency	MGAM	7q34	Maltase-glucoamylase activity	(7,9)
Ion and nutrient transport defects				
Glucose-galactose malabsorption	SGLT1	22q13.1	Na ⁺ /glucose cotransporter	(10,11)
Fructose malabsorption	GLUT5	1p36	Fructose transporter	(10,12)
Fanconi-Bickel syndrome	GLUT2	3q26	Basolateral glucose transporter	(13)
Cystic fibrosis	CFTR	7q31.2	cAMP-dependent Cl ⁻ channel	(14)
Acrodermatitis enteropathica	SLC39A4	8q24.3	Zn ²⁺ transporter	(15)
Congenital chloride diarrhea	DRA	7q22-q31.1	Cl ⁻ /base exchanger	(16)
Congenital sodium diarrhea	SPINT2*	19q13.1	Serine-protease inhibitor	(17,18)
Lysinuric protein intolerance	SLC7A7	14q11	Hydrolyzes endo-/exopeptidases	(18)
(1922)			Amino acid basolateral transport	2008 - 10082
Congenital bile acid diarrhea	ABAT	13q3	Ileal Na ⁺ /bile salt transporter	(19)
Pancreatic insufficiency				8 B
Enterokinase deficiency	PRSS7	21q21	Proenterokinase	(20,21)
Trypsinogen deficiency	PRSS1	7q35	Trypsinogen synthesis	(20,21)
Pancreatic lipase deficiency	PNLIP	10q26.1	Hydrolyzes triglycerides to fatty acids	(21)
Lipid trafficking		0750		35 80
Abetalipoproteinemia	MTP	4q22	Transfer lipids to apolipoprotein B	(22,23)
Hypobetalipoproteinemia	APOB	2p24	Apolipoprotein that forms chylomicrons	(22,23)
Chylomicron retention disease	SAR1B	5q31.1	Intracellular chylomicron trafficking	(23)

cAMP = cyclic adenosine monophosphate.

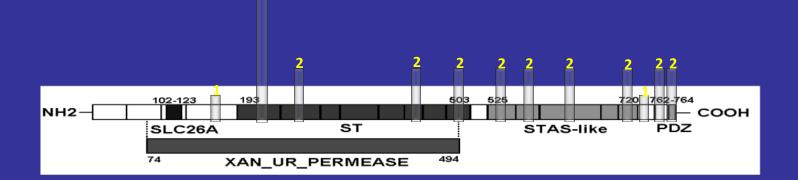
* This mutation has been associated with the syndromic form of congenital sodium diarrhea.

Berni Canani et al, JPGN 2010; 50: 360

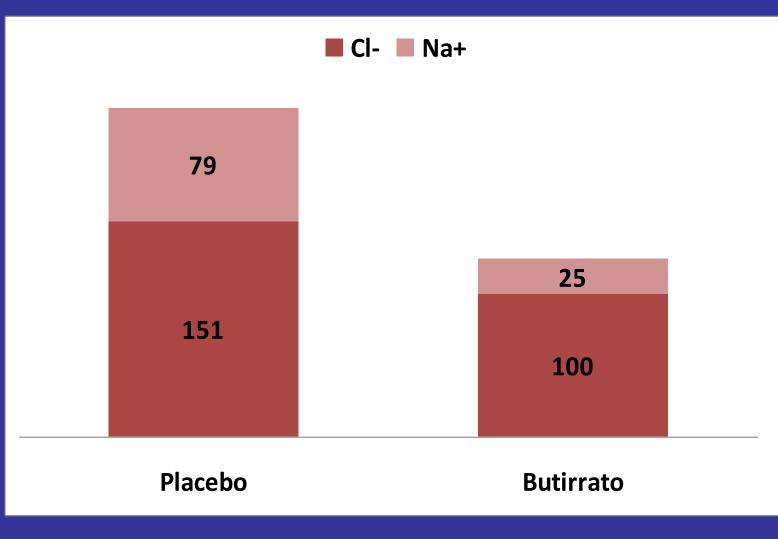
Congenital Chloride Losing Diarrhea

CLD (CLD-OMIM 214700) is a congenital disorder characterised by a defect of intestinal chloride absorption due to mutations in the **SLC26A3/DRA** gene.

Complications


- Severe dehydration
- Intestinal pseudobstruction (surgical interventions)
- Mental retardation
- Renal impairment
- Scarce quality of life

Genetic aspects of CLD


About **50 mutation** has been identified on the gene of CLD.

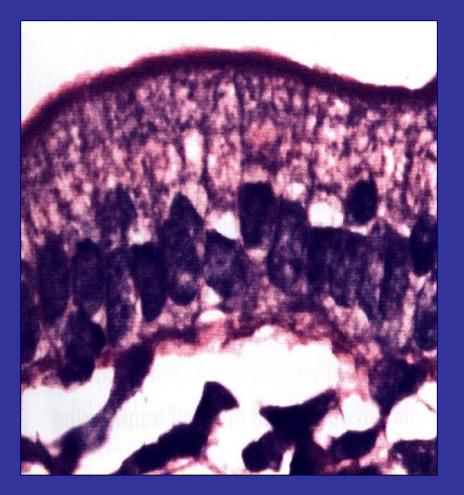
All these mutations could be **classified in 4 type**:

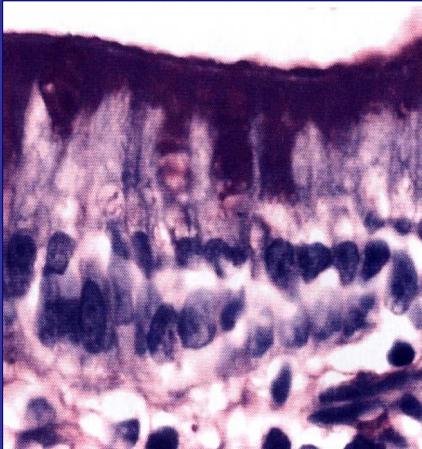
a) Missence
b) Del/Ins
c) Splicing
d) Nonsense

Butyrrate reduces ion fecal losses

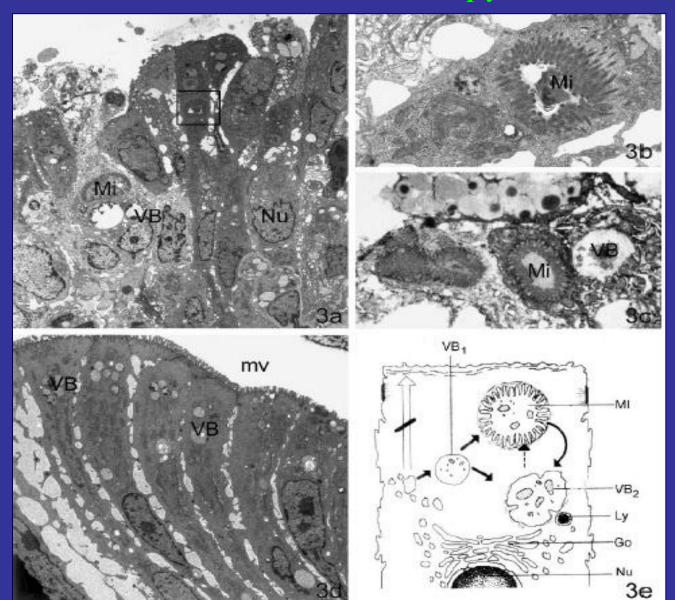
Data are expressed as mmol/L

Molecular basis of defects of enterocyte differentiation and polarization


TABLE 2. Molecular basis of the main forms of congenital diarrheal diseases: defects of enterocyte differentiation and polarization


Disease	Gene	Location	Function	References
Microvillous inclusion disease	<i>MY05B</i>	18q21	Intracellular protein trafficking	(55)
Congenital tufting enteropathy	<i>EpCAM</i>	2p21	Cell-cell interaction	(24)
Syndromic diarrhea	Unknown	Unknown	Unknown	(25)

EpCAM = epithelial cell adhesion molecule.


Berni Canani et al, JPGN 2010; 50: 360

Microvillous congenital atrophy PAS staining

Microvillous congenital atrophy <u>Electron microscopy</u>

Molecular basis of defects of enteroendocrine cells differentiation

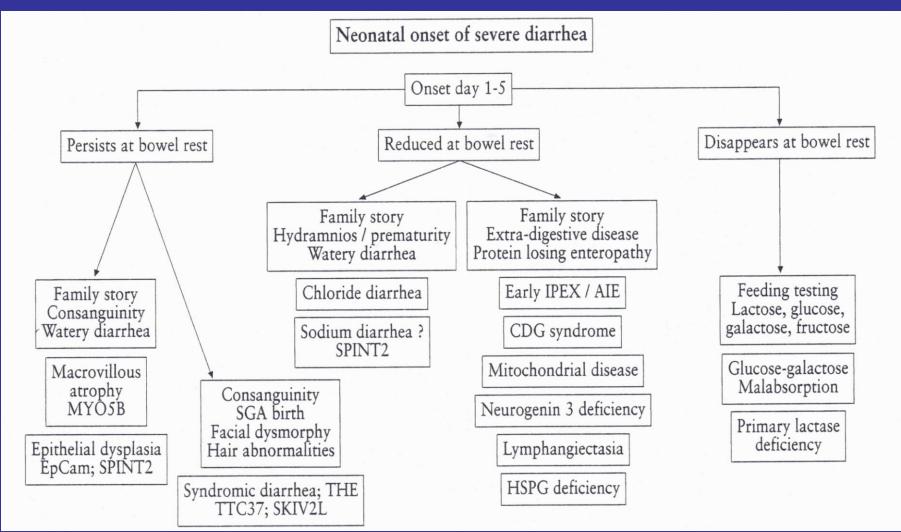
TABLE 3. Molecular basis of the main forms of congenital diarrheal diseases: defects of enteroendocrine cells differentiation

Disease	Gene	Location	Function	References
Enteric anendocrinosis	NEUROG3	10q21.3	Enteroendocrine cell fate determination	(26,27)
Enteric dysendocrinosis	Unknown	Unknown	Enteroendocrine cell function	(26,27)
Proprotein convertase 1 deficiency	PCSK1	5q15-q21	Prohormone processing	(28)

NEUROG-3 = neurogenin-3.

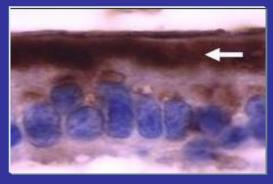
Berni Canani et al, JPGN 2010; 50: 360

Molecular basis of defects of modulation of intestinal immune response

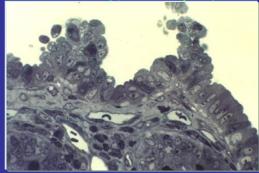

TABLE 4. Molecular basis of the main forms of congenital diarrheal diseases: defects of modulation of intestinal immune response

Disease	Gene	Location	Function	References
IPEX	<i>FOXP3</i>	Xp11.23-q13.3	Transcription factor	(29-32)
IPEX-like syndrome	Unknown	Unknown	Unknown	(29-32)
Immunodeficiency-associated autoimmune enteropathy	Unknown	Unknown	Unknown	(33)
APS-1	<i>AIRE</i>	21p22.3	Regulation gene transcription	(34)
Autoimmune enteropathy with colitis-GAGD	Unknown	Unknown	Unknown	(35)

APS-1 = autoimmune polyglandular syndrome-1; FOXP3 = forkhead box P3; GAGD = generalized autoimmune gut disorder; IPEX = immune dysregulation polyendocrinopathy, enteropathy, X-linked syndrome.


Berni Canani et al, JPGN 2010; 50: 360

Algorhytm for the differential diagnosis of severe diarrhea with neonatal onset


From Goulet, 2012

Microvillous Inclusion Disease

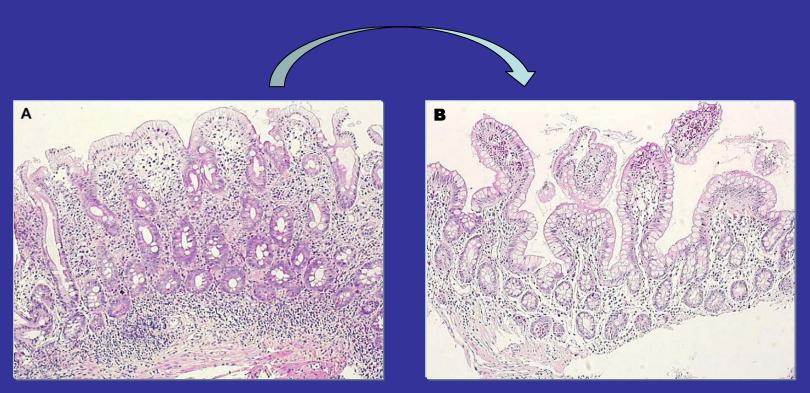

TOTAL PARENTERAL NUTRITION

Tufting Enteropaty

Recurrent sepsis
PN associated liver disease
Loss of central vascular access

Enteric Anendocrinosis

INTESTINAL TRANSPLANTATION

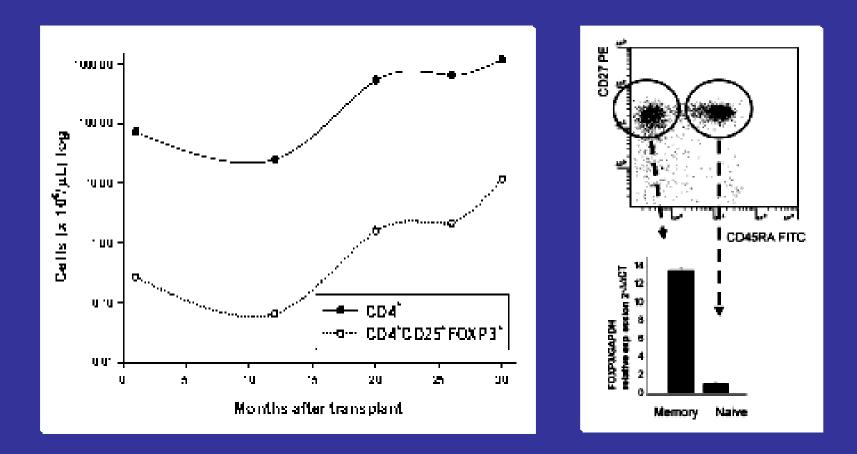

TPN vs. INTESTINAL TRANSPLANTATION

Option	Disease	Surviv	Survival (%)	
		1 y	4 y	
TPN		94	80	
Intestinal Tx				
	Intestine	70	47	
	Intestine+Liver	62	40	
	Multivisceral	45	40	

Modified by SS Kaufman, JB Atkinson, A Bianchi, OJ Goulet. Pediatr Transplantation 2001; 5:80-87

SUCCESSFUL USE OF THE NEW IMMUNE-SUPPRESSOR SIROLIMUS IN IPEX (IMMUNE DYSREGULATION, POLYENDOCRINOPATHY, ENTEROPATHY, X-LINKED SYNDROME)

Lutz Bindl, MD, Troy Torgerson, MD, PhD, Lucia Perroni, MD, Nelly Yolssef, MD, Hans D. Ochs, MD, Olimer Goulet, MD, and Frank M. Ruemmele, MD, PhD



Before treatment

4 years of follow-up

L Bndl, T Togerson, L Perroni et al. J Pediatr 2005: 147:256-59

BONE MARROW ALLOGENIC TRANSPLANTATION IN IPEX SYNDROME

Aarati Rao, Naynesh Kamani, Alexandra Filipovich . Blood 2007;109:383-85

Conclusions

Chronic diarrhea may occur in many diseases including a variety of infectious and immunological conditions

Great progress recently made in the understanding of disease mechanisms at molecular level

Rare syndromes of intractable diarrhea have provided important insights into gut physiology and immunology

All these new information have opened the way to more efficient treatment for both common and rare conditions